
International Journal of Theoretical Physics, Vol. 27, No. 11, 1988 

Probability and Logical Structure 
of Statistical Theories 

Michael J. W. Hall  

Received May 12, 1988 

A characterization of statistical theories is given which incorporates both classical 
and quantum mechanics. It is shown that each statistical theory induces an 
associated logic and joint probability structure, and simple conditions are given 
for the structure to be of a classical or quantum type. This provides an alternative 
for the quantum logic approach to axiomatic quantum mechanics. The Bell 
inequalities may be derived for those statistical theories that have a classical 
structure and satisfy a locality condition weaker than factorizability. The relation 
of these inequalities to the issue of hidden variable theories for quantum 
mechanics is discussed and clarified. 

1. I N T R O D U C T I O N  

A n u m b e r  of physical  systems, such as two-sided coins, electrons, and  
viral infections,  behave in a statistical manner .  Whether  an electron will be 
detected in a certain place, or a tossed coin will land with "head"  upward,  

or a member  of some popu la t ion  will succumb to an inf luenza virus, cannot  
be correctly predicted in many  circumstances.  However,  as is well known,  
the behavior  of many coins, many electrons, and large popula t ion  groups 
is often amenab le  to accurate predict ions involving relative frequencies, or 

probabil i t ies.  
This paper  is pr imari ly  concerned with characterizing the class of 

theories which describe statistical phenomena ,  and  l inking this characteriz- 

at ion with (1) the q u a n t u m  logic approach to axiomatic  q u a n t u m  mechanics  

[originated by Birkhoff and  yon N e u m a n n  (1936); see also G u d d e r  (1979), 
Beltrametti  and Cassinell i  (1981), and  Primas (1981)] and (2) the der ivat ion 
and significance of the Bell inequali t ies  [see the review by Clauser  and  
Shimony (1978) for an exposi t ion and further  references]. 
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In the next section notation suitable for describing theoretical predic- 
tions is introduced, allowing a definition of a statistical theory. Statistical 
theories include classical and quantum mechanics as examples. 

It is shown in Section 3 that each statistical theory induces an associated 
probability and logical structure. Simple necessary and sufficient conditions 
are given for this structure to be of either a "classical" or a "quantum" 
type. This provides the basis for a "statistical theory approach" to quantum 
mechanics, which is contrasted with the quantum logic approach mentioned 
above. 

Section 4 is concerned with "hidden variables" within the context of 
statistical theories. The concept of covering theories, which includes the 
notion of hidden variable theories, is defined, and some examples are given. 
In particular, it is shown that there is a covering theory with a "classical" 
structure for each statistical theory. 

In Section 5 it is demonstrated that the generalized Bell inequalities 
first derived by Clauser eta/. (1969) hold for all "classical" statistical theories 
which satisfy a weak locality condition. This is based on and clarifies some 
earlier work (Hall, 1988). The derivation is contrasted to that of Clauser 
and Home (1974) and of  Fine (1982), and its relation to the existence of 
hidden variable theories for quantum mechanics discussed. 

Finally, results are summarized in a conclusion. Technical proofs are 
kept to Appendices for easier reading. 

2. STATISTICAL THEORIES 

The usefulness of a theory is determined, at least in part, by its ability 
to make predictions. These predictions (which may be retrospective) refer 
to experiments or observations on some class of systems, and in particular 
make statements about the results of such experiments. Notation suitable 
for discussing predictions will now be developed, as a prelude to characteriz- 
ing those theories that make statistical predictions. 

If the possible results of some experiment E are contained in a set RE, 
then there is an associated group of propositions of the form, "The result 
of E is contained in a subset X of RE." These propositions are verified or 
falsified by the performance of experiment E, and indeed fully characterize 
the outcome of the experiment. 

It follows that predictions of the theory may be expressed in terms of 
results of the yes/no experiments which correspond to testing various 
propositions. The set of all propositions involved in predictions of the theory 
will be denoted by ~. Further, the class of systems on which the experiments 
are performed may be characterized by a set of states, denoted by S, where 
each state is a description of a member of the class of systems. The result 
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of testing proposition A ~ ~ on state h ~ S will be denoted by r(A, h), where 
r(A, A) := 1 (0) if A is verified (falsified). 

Hence, if propositions A1, A2, �9 . . ,  AN ~ ~ can be tested respectively 
on systems described by states hi ,  A2, . . . ,  AN c S, the theory is expected to 
make some prediction(s) about the results 

r(A1, hi), r(A2, h2), �9 �9 �9 r(AN, AN) 

For example, a deterministic theory contains a mapping d from ~ x S to 
the set {0, 1} such that r(Ai, hi) is predicted to be d(Ai, hi) for each i. 

In contrast, a statistical theory is defined here as a theory which contains 
a mapping p from ~ x S to the interval [0, 1] such that the total number  
of  verifications for the above sequence Nyes := Y~iN=l r(Ai, hi) is predicted to 
have the behavior 

N t h e o r e t i c a l  __ Nyes 
yes 0 as N ~ o o  ( la)  

N 

~/-th . . . .  tical is given by the expression where - - y e s  

N 
N t h e o r e t i c a l  ._.~ 

yes  �9 Y~ p(Ai, hi) ( lb)  
i = l  

Thus, deterministic theories are ~pecial cases of statistical theories, with 
p(A, A)--- d(A, h). 

I f  p(Ai, h l ) = p  for each value of i, then equations (1) imply that 
Nyes~pN for large N. Thus, for A~  ~, h ~ S, the quantity p(A, A) may be 
interpreted as "the probabili ty of  verifying proposit ion A on state h." 

Now, if p(A, A) and p(B, h) are equal for all states h c S, then the 
theory does not distinguish between predictions involving the propositions 
A or B. Hence, we may say that A and B are equivalent with respect to the 
theory, and write A-= B. Of  course, one might be able to refine the state 
descriptions so as to discriminate between two such propositions; however, 
this would entail a new theory. 

Thus, the propositions of  a statistical theory may in fact be represented 
(up to equivalence) as mappings from the set of  states S to the interval 
[0, 1], where for A c ~, h c S, we define 

A(h):=p(A, h) (2) 

Using the symbol A to denote both a proposit ion and a mapping should 
not lead to confusion, as the remainder of  the paper  is primarily concerned 
with properties of  the latter representation. Thus, for the purposes of  what 
follows,, a statistical theory will be denoted b y ( S ,  ~ ) ,  where S is the set 
of  states and ~ is the set of mappings from S to [0, 1] obtained via 
equation (2). 
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3. THE PROBABILITY AND LOGICAL STRUCTURE 
OF STATISTICAL THEORIES 

3.1. Introduction 

The definition of a statistical theory in the previous section is of a very 
general nature, yet it turns out that very few conditions need to be further 
imposed to obtain interesting structural properties. Indeed, without any 
extra assumptions, formulations of "joint probabilities," "complementary 
propositions," and an "implication relation" can be specified in a natural 
way, leading to an associated probability structure and a representative 
logic for each statistical theory. 

The existence of an inherent structure, in which "classical" rules for 
manipulating probabilities and propositions [e.g., p( a & b )+ p (a  & b') = 
p(a) ,  and a & a'-= 0] need not hold in general is consistent with the concep- 
tual viewpoint that such rules are not absolute. This has similarities with 
the idea that the rules of Euclidean geometry do not apply a priori to 
physical space-time, and such an analogy has been explored by Accardi 
(1984) and Pitowsky (1986). Alternatively, one may argue that the classical 
rules are indeed absolute, and hence that only statistical theories with a 
"classical" structure can be of fundamental interest. 

The first viewpoint supports the quantum logic approach to axiomatic 
quantum mechanics, in which propositions are constrained to satisfy some, 
but not all, of  the properties of Boolean logic (see, e.g., Beltrametti and 
Cassinelli, 1981). The second viewpoint, when confronted with quantum 
mechanics, leads to a conflict with notions of local causality in the form of 
the Bell inequalities (see Section 5). 

In the following sections, the probability and logical structure inherent 
to statistical theories are investigated, and simple necessary and sufficient 
conditions are given for statistical theories to exhibit classical and quantum- 
like behavior. The latter case leads to a "statistical theory" approach to 
axiomatic quantum mechanics, which is contrasted with the quantum logic 
approach mentioned above. 

3.2. Potential Propositions 

Now, an aim of this paper is to associate with any two propositions 
A, B of a statistical theory (S, ~ )  a quantity (A A B)(A) for each A ~ S, 
which may be interpreted as a "joint probability." Clearly, then, a mapping 
A ^ B: S ~  [0, 1] must be specified. Desirable properties of such a mapping 
are discussed in Section 3.3; for now it is noted that one may not necessarily 
have A ^ B ~ ~. This motivates the definition of the set ~ of potential 
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propositions of (S, ~ )  as the set of mappings from S to [0, 1], i.e., 

~ : :  {AIA: S~[O,  1]} 

It immediately follows that ~ _ ~ .  
Two special elements of ~ ,  0 and 1, are defined by 

(3) 

0(A):= 0, / (A):= 1 V A e S  (4) 

and for each A c ~ ,  the complement A '  of A is defined by 

A'(A) := 1 - A ( A )  V A e S  (5) 

For convenience it will be assumed that 0, 1 ~ ~ for the remainder of 
the paper. These propositions can be interpreted as corresponding to yes/no 
experiments which always give a no and a yes result, respectively. 

In some cases, the complementary proposition A' may also be inter- 
preted physically for A c 3 ~. First, define the experimental proposition 
such that ,4 is tested on state h c S by testing A on A and reversing the 
yes/no results (see Section 2). Thus, r(A, A)= 1 -  r(A,  A). From equations 
(1) and (2) it follows that ifAi c ~ for each i, then for N large, ~iN__ 1 ,4/(hi) "-~ 
Y~i~l AI(A~). Hence it is consistent for propositions ,4 and A' to be equivalent 
with respect to (S, 3~), and in such a case the latter proposition has a simple 
interpretation. 

3.3. The Associated Probabil ity Structure and Representative Logic of  a 
Statistical  Theory 

In this section, the mappings A ^ B and A v B c ~ ,  called the join 
and meet of propositions A, B ~ ~ ,  will be defined, as well as the partial 
ordering relation A ~ B ,  called implication. Properties of these definitions 
are stated, with proofs given in Appendix A. 

To motivate these definitions, it is first suggested that reasonable proper- 
ties to be satisfied for the quantity (AAB)(A) to behave like a "joint 
probability" include A A B =- B ^ A, A A ( B ^ C ) =-- ( A A B ) ^ C, and ( A A B ) 
(A) --< A(A) for each A ~ S. The latter property can be written more succintly 
as A ^ B O A ,  where ~ is the natural partial ordering on ~ ,  given by 

A ~ B  iff A(A)<~B(A)  V A t S  (6) 

Condition (6) may be considered as generalizing equation (3c) of Birkhoff 
and von Neumann (1936) to a definition of implication for all statistical 
theories. 
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It follows from condition (6) that the implication relation satisfies the 
following properties for all A, B, C ~ ~ :  

A ~ A  (reflexivity) (7a) 

if A ~ B ,  B ~ C ,  then A ~ C  (transitivity) (7b) 

if A ~ B ,  B O A ,  then A -  = B  (7c) 

if A ~ B ,  then B ' ~ A '  (7d) 

O ~ A ~ I  (7e) 

The quantities (AAB)(A) and (AvB) (A)  are now defined for A, 
B c ~ ,  h ~S, by 

(A A B)(A):= sup{X(^)I X ~ ~, X ~ A ,  X ~ B }  (8a) 

(A v B)(A):= inf{X(A)]X ~ ~, A ~ X ,  B ~ X }  (8b) 

The existence of A A B and A v B is assured by the earlier assumptions 
0 c ~ and 1 ~ ~, respectively. 

It is shown in Appendix A that the reasonable properties suggested 
earlier in this section for A A B are indeed satisfied by definition (8a), i.e., 
for A, B, C c 3 ~  one has 

A^  B=- B A A  (9a) 

A A (B A C) =-- (A A B) A C (9b) 

A ^ B ~ A  (9c) 

It is also shown that A A B has properties similar to a greatest lower bound 
for A and B, namely 

( X ~ A A B )  iff ( X ~ A , X ~ B )  V X ~  (9d) 

for all A, B ~ ~ .  
The mapping Av  B satisfies analogous properties, also proved in 

Appendix A. Thus, for A, B, C ~ ~ one has 

A v B = B v A  (10a) 

A v (B v C) -= (A v B) v C (10b) 

A ~  A v B (10c) 

( A v B ~ X )  iff ( X ~ A , X ~ B )  V X ~  (10d) 

where (10d) demonstrates that A v B behaves like a least upper bound for 
A and B. From relations (9) and (10) follow such properties as 

AAO=--O, A v l = - l ,  AAA=-AAI=-A-~AvO-~AvA,  V A ~  (11) 
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Relations (9)-(11) indicate that definitions (8a) and (8b) give a reason- 
able, abstract formulation of a probability structure for statistical theories. 
The representative logic of the statistical theory (S, ~ )  is defined to be the 
partially complemented poset (~, 3 ,  '). For elements A, B of the poset, 
the greatest lower bound of A and B exists only if A A B ~ 3 ~, and is then 
given by A A B, from condition (9d). Similarly, from (10d) the least upper 
bound exists only i rA v B c ~, and is then given by A v B. The representative 
logic is fully complemented if A' ~ ~, VA c ~. 

Finally, definitions (8a), (8b) may be extended consistently as follows, 
to give the join and meet of any countable sequence A1, A2, A 3 , . . .  c ~ .  

(A Ai)(A):=sup{X(A)lX~ ~,X~Ai} (12a) 

(yA~)(A):=inf{X(A)]Xc~,VA~X } (12b) 

where the propositions (-~i A~, [_.J~ Ai 6 ~ are defined by 

It is shown in Appendix A that 

if A'~,VAc~, t h e n y A i ~ .  AI (14) 

i.e., de Morgan's law holds for those statistical theories in which the 
representative logic is fully complemented. 

3.4. Classical  and Regular Statistical Theories 

In the last subsection the probability and logical structure of statistical 
theories was investigated, and the fundamental structural properties noted 
[(7), (9), (10), (11), and (14)]. In this subsection, classical and regular 
statistical theories will be defined and discussed and examples of each 
provided. 

First, a statistical theory (S, ~ )  is defined to be classical when the 
following conditions are satisfied for all A, B ~ ~, h c S: 

A'~ ~ (15a) 

AAB~ (15b) 

(A A B)(A) + (A'A B)(A) = B(A) (15c) 

Conditions (15a), (15b) imply that ~ is closed under complementation and 
join of propositions, and hence, from equation (14), it is also closed under 
the meet of propositions, i.e., A v B ~ ~, VA, B e ~. Condition (15c) may 
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be recognized as a fundamental law of classical probability (see, e.g., 
Kolmogorov, 1950), especially if rewritten in the form p(A^B,  3.)+ 
p(A'^ B, A) = p( B, h ), using equation (2). 

To motivate the term "classical" for statistical theories which satisfy 
conditions (15), it is first convenient to define generalized probability 
measures. A generalized probability measure on (S, ~ )  is a mapping 
m: ~ -  [0, 1] such that 

if A1,A2, A 3 , . . . E ~  satisfy Ai~A~ Vi~j ,  

then m ( V  A i ) = ~ m ( A / )  (16a) 

m(1) = 1 (16b) 

Conditions (16a), (16b) generalize the definition of a probability measure 
by Beltrametti and Cassinelli (1981). If the representative logic of (S, ~ )  
is Boolean (see Appendix B), then the relations A i ~ A j  and Ai ^ A t ~- 0 are 
equivalent, and equation (16a) then implies that m is additive for mutually 
exclusive propositions, which is the basic tenet of classical probability theory 
(Kolmogorov, 1950). Note that from 0 0 0 '  and (16a) it follows that re(O) = 
0, while equation (16b) is a normalization condition. 

It is shown in Appendix B that a statistical theory (S, 3 ~) is classical 
if and only if (1) the representative logic is Boolean, and (2) the mappings 
rex: N ~ [ 0 ,  1] defined by m~(A):= A(A) are generalized probability 
measures on (S, ~ )  for all states 3. e S. Thus, classical statistical theories 
are just those statistical theories which have a "classical" probability and 
logical structure. The significance of the Bell inequalities for such statistical 
theories will be discussed in Section 5. 

A regular statistical theory is defined to be one for which (S, ~ )  satisfies 
the conditions 

A'E ~ (17a) 

if A ~ B ,  t h e n A ' ^ B ~  (17b) 

if A ~ B ,  then(A^B)(3.)+(A' ^B)(3.)=B(3.) (17c) 

for all A, B e  ~, 3. ~ $. Comparison with conditions (15) shows that all 
classical statistical theories are contained in the set of regular statistical 
theories. It is demonstrated in Appendix C that a statistical theory (S, ~ )  
is regular if and only if (1) the representative logic is orthocomplemented, 
orthocomplete, and orthomodular, and (2) the mx as defined above are 
generalized probability measures for all h c S. These conditions are related 
to the quantum logic approach to axiomatic quantum mechanics, and indeed 
conditions (17) provide a basis for an alternative "statistical theory" 
approach, outlined in Section 3.5. 
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To conclude this section, generic examples of classical and regular 
statistical theories are given. 

Example 3.1. Let S be the phase space of some system of classical 
dynamics and ~ be the set of  propositions corresponding to whether the 
state of the system is contained within some subset of S. Thus, for X _c S, 
the proposition Ax ~ ~ is defined by Ax (A) := 1 (0) for h ~ X (h ~ X).  From 
(5) it follows that A'x =- Ax,  c ~, where X c = S\X,  while from relations (6) 
and (8) it follows that A x ~ A , .  is equivalent to X___ Y, and hence that 
Ax A Ay =-- Ax~v  ~ ~. Thus, (S, ~ )  satisfies conditions (15a), (15b). Further, 
i fh  c X, then either h c X c~ Y or h c X ~ y c  while i fh  ~ X, then A ~ X c~ Y 
and , ~  X n YL It follows that A x ~ y ( h ) + A x ~ v , ( h )  = Ax(h)  for all h c S, 
and therefore condition (15c) is also satisfied. Hence (S, ~ )  is a classical 
statistical theory. 

Example 3.2. Let S be the set of unit vectors of a separable Hilbert 
space H, and let ~ be indexed by the set of closed subspaces of H, where 
if E denotes the projection onto subspace E, then AE(~b):= (q~, E~p) for all 
~0 ~ S, AE c ~. Thus, (S, ~ )  describes a quantum mechanical system. From 
(5) one has A~ =-AE~ ~ ~ where E • is the orthogonal complement of E in 
/4. Ft/rther, from relations (6) and (8) it follows that the relations A~,~AE2 
and E1c_E2 are equivalent and hence that AEIAAE2~AE,~E~.  Thus, 
conditions (17a), (17b) are satisfied by (S, ~) .  Finally, if E1 ~ E2, then E2 
may be expressed as the direct sum of subspaces El c~ E2 and E~ c~ E2, and 
so from the properties of the inner product on H it follows that condition 
(17c) is also satisfied. Hence, (S, ~ )  is a regular statistical theory. Note that 
(15c) is not satisfied (e.g., let E~, E2 be distinct, nonorthogonal, one- 
dimensional subspaces of H, and choose A c E~), and hence (S, ~ )  is not 
a classical statistical theory. 

3.5. Comparison with Quantum Logic Approach 

The aim of the quantum logic approach is to derive the Hilbert space 
structure of quantum mechanics from a small number of axioms. The 
approach (see, e.g., Gudder,  1979) begins with a set of propositions 
which has a number of conditions imposed on it, including the existence 
of a partial ordering, an orthocomplementation, orthomodularity, and 
orthocompleteness (see Appendix C for definitions). States are then defined 
independently, essentially as mappings from ~ ~ [0, 1] which satisfy condi- 
tions (16). Thus, defining A(A ) := )t (A) for state A, it is seen that the quantum 
logic approach leads to a statistical theory (S, ~) .  

In contrast, the "statistical theory" approach recognizes that quantum 
mechanics is a statistical theory, and begins from this point, i.e., with the 
existence of a statistical theory (S, ~) .  A natural complementation 
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[definition (5)] and a natural partial ordering [definition (6)] are used to 
obtain a probability and logical structure. In this sense equations (4)-(12) 
are "free"; they arise from the contemplation of statistical theories in 
general. To arrive at an orthocomplemented, orthomodular, orthocomplete 
poset with the states corresponding to generalized probability measures, 
only three relatively simple conditions [conditions (17)] need be satisfied. 
These are to be compared with the seven conditions needed in the quantum 
logic approach (see Appendix C). 

A further technical advantage of the "statistical theory" approach is 
that the quantities (A ^ B)(A) and (A v B)(A) are always well defined, and 
hence can be manipulated, whereas in the' quantum logic approach they 
can only be defined as greatest lower bounds and least upper bounds, 
respectively, which need not exist in general. 

Finally, in the quantum logic approach there is interest in the case 
where the'set of states is order-determining, i.e. where the relations h (A) -< 
A(B), VA c S, and A ~ B  are equivalent. The order-determining property 
is guaranteed in the "statistical theory" approach through definition (6). 

4. COVERING THEORIES 

In Section 3.4 it was shown (Example 3.2) that the Hilbert space 
structure of quantum mechanics leads to a nonclassical statistical theory. 
As discussed in Section 3.1, such a result may be interpreted as indicating 
either (1) nonclassical structures are required in general to describe the 
physical world, or (2) quantum mechanics is an inadequate description of 
the physical world. 

In the latter case one would be led to search for a classical statistical 
theory which describes all the phenomena explained by quantum mechanics. 
More generally, one may ask whether the predictions of a given statistical 
theory may all be reproduced by another statistical theory, and what relations 
there might be between the probability and logical structures of these 
theories. 

Accordingly, a statistical theory (S, ~ )  is defined to be a covering theory 
for a statistical theory (S, ~ )  if and only if there exist mappings a: ~--> 
and fi: S --> S such that 

A and A correspond to the same yes/no experiment (18a) 

A(A)=A(J,), VATS, A ~  (18b) 

where E,:= a(A) and X := fl(A). Thus, (S, ~ )  reproduces all the predictions 
of (S, ~) ,  and in general may yield further predictions also. 

It follows from (6) and (18b) that the implication relations A ~ B  and 
A ~ / ~  are not equivalent. In particular, the former relation may hold without 
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the latter being satisfied. Thus, (S, ~ )  and (S, ~ )  in general have different 
probability and logical structures. Also, the relation A -  B does not imply 
A --- B in general, i.e., while A and B may be tested by the same experiment 
for (S, ~) ,  they may correspond to distinct experiments for (S, ~) .  Since 
the propositions and states of  (S, ~ )  are obtained as mappings (a  -1 and 
fl-1) of corresponding quantities of the covering theory, the latter may in 
some cases be thought of  as forming the basis of or underlying the former, 
i.e., as a "hidden variable" theory. However, such an interpretation will be 
appropriate only for certain types of mappings. 

Four interesting examples of covering theories are now given to con- 
clude this section. The fourth example demonstrates the existence of a 
classical covering theory for each statistical theory. 

Example 4.1. Let S={AI,A2} and ~ = { O , A , A ' I } ,  where A ( A 0 = 0  
and A(A2) = 1/2. It follows that A ^ A'--- A ~  0, and hence (S, ~ )  does not 
have a classical structure. However, if ~q = {51,52, 53} and ~ = {0, A, A', I}, 
with ,4(~1) = A(A1), A(52) -- A(A2), and -4(53) = 1, then (S, ~ )  is a covering 
theory for (S, ~ )  and is in fact a classical statistical theory. 

Example 4.2. For a given statistical theory (S, ~) ,  define (S c, ~ )  by 

SO:={ p:S'->[O'~176 ~sp (A)=I}  

A(p):= ~. p(A)A(A), rora l l  A ~  p ~ S  c AcS 
A state p ~ S c can be interpreted as being obtained by choosing a member 
of an ensemble of systems described by the distribution p(A). For A ~ S, 
the state p~ ~ S c defined by p~ (A ') := 6~.,, satisfies A(p~) = A(A) for all A ~ ~, 
A ~ S, and hence (S ~, ~ )  is a covering theory for (S, ~) .  Further, ifp~, p2 ~ S ~, 
then ap~ + (1 - a)p2 ~ S ~ for 0 -  < a -< 1. Therefore, (S ~, ~ )  may be called the 
convex-state covering theory corresponding to (S, ~) .  One may show that 
the implication relation A ~ B  is equivalent for both (S, ~ )  and (S ~, ~) ,  
and hence that their representative logics are identical. For the case of 
Example 3.2 of Section 3.4, S ~ corresponds to the set of density operators 
on the Hilbert space H, and a state W~ S ~ is interpreted as a mixture of 
states ~b E S. For the case of  Example 3.1 of Section 3.4, S ~ is the set of 
ensembles of classical systems, and includes the equilibrium ensembles 
of statistical mechanics. 

Example 4.3. For a given statistical theory (S, ~) ,  define (S ~, ~ )  by 

~c={/z:~[0,  c~) A~ /z(A) --1} 
S c as in Example 4.2 above, and / z ( p ) : = ~ A ~  Iz(A)A(p) for all /z~ ~ ,  
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p e S c. Defining /ZA ~ ~c by tZA(B)= ~A,B and px ~ S c as in the previous 
example, it follows that I.t,A(px)= A(A), VA ~ ~, h e S. Further, ~c and S c 
are both convex sets, and hence (S c, ~ )  may be called the completely convex 
covering theory corresponding to (S, ~) .  In general, (S, ~ )  and (S ~, ~c)  
have different representative logics. For the case of Example 3.2 of Section 
3.4, ~c corresponds to the set of effects encountered in the operation-effect 
formulation of quantum mechanics (Kraus, 1983). 

Example 4.4. Let (S, ~ )  be a statistical theory and consider a set of 
propositions ~d, the elements of which are indexed by the mappings from 
S to subsets of the interval [0, 1), i.e., 

~,a := {avl F: $- ,{MIMc_ [0, 1)}} 

The deterministic theory (S x [0, 1), ~a )  may then be defined by 

c~v(A, x) := {1, x 6  F(A) 
o, x~F(,~) 

for all av ~ ~e, A ~ S, and x ~ [0, 1). Thus, the state (& x) ~ S x [0, 1) fully 
determines the outcome of  testing any proposition ccv ~ ~a. It is not difficult 
to show that ( S x  [0, 1), ~d)  is classical. First, from (5) one may show that 
O l ~  OlFC E ~d, where F~(A):= [0, 1)\F(A). Second, from relations (6) and 
(8) it follows that the relation az ~ ao is equivalent to F(A) _ G(A), 'r ~ S, 
and hence that av ^ aG =-- cez~  C ~d, where (F  n G)(A) := F(A) c~ G(A). 
Third, if x c G(A), then either x e (F  c~ G)(A) or x ~ (F  r c~ G)(A); while if 
x ~ G(A ), then x ~ (F  c~ G)(A ) and x ~ (F  r c~ G)(A ); hence (ae  A C~o)(A, x) + 
( ak  A C~G)(A, X) = ao(A, x) for all A e S, x ~ [0, 1). Thus, conditions (15a)- 
(15c) are satisfied by (S x [0, 1), ~d) ,  SO that it is indeed a classical theory. 

Suppose now that an ensemble of states is constructed from elements 
of S x [0, 1), corresponding to some fixed A ~ S and a distribution p(x) over 
[0, 1). The probability of a proposition aF ~ Na being verified on a member 
of this ensemble is then 

OZF(A,p):= f~ p(x)o~F(A,x)= fF p(x) dx 
(x) 

This motivates the definition of the statistical theory (S a, 3 ~d), where 

Ifo } s~:=sx[o, 1)~=Sx o:[0,1)-*[0, oo) p(x) dx= 1 

and with aF(A, p) as above. Thus, (S ~, ~d)  has a simple ensemble interpreta- 
tion in terms of the underlying deterministic theory ( S x [ 0 ,  1 ) ,~d) .  
Moreover, the implication relations for these two theories are equivalent 
[consider the case p~(x'):= G~,], and it follows that conditions (15a)-(15c) 
are satisfied by (S e, 3 ~ ) ,  i.e., the latter is a classical statistical theory. 



Logical Structure of Statistical Theories 1297 

Finally, for proposition A ~ ~, define a proposition aFA c ~d such that 

fvA A(A ) dx 
(;~ ) 

for all A e S, e.g., let FA(A):= [0, A(A)). It follows that for the uniform 
distribution, po(x) =- l, one has 

L c~F~(A, Po) = aFt(A, x) dx = dx = A(A) 

Hence, (S a, ~d) is a covering theory for (S, N), where A c ~  and A e S  
correspond to aFA ~ ~d and (A, P0) e S d, respectively. In view of the above, 
(S d, ~d) provides what may be called the deterministic-picture classical 
covering theory for (S, ~) .  

It should be noted that there is a wide range of choice for the mapping 
A-~ a f t ;  however, this range may be narrowed by imposing certain physical 
requirements. For example, suppose that a group of propositions A1, A2, 
A 3 , . . .  C ~ satisfy Yq Ai(h) = 1 for all A c S, and correspond to the possible 
outcomes ra, r2, r3, �9 . .  , of some experiment E (i.e., A~ is verified if and 
only if r~ is obtained). If  it is required that the corresponding propositions 
aF,, aF2, aF3, . . ,  c ~d are also tested by experiment E, then it is physically 
plausible, and consistent with equations (1), to postulate that Y~ aF, (A, p) = 1 
for all (A, p) e S d. 

The choice Fi(A)= [0, A~(A)) does not satisfy this summation condi- 
tion; however, a suitable choice does exist, given by 

) F,(A):= Aj(A), E Aj(A) 
Lj=I  j= l  

This latter choice generalizes a hidden variable model for quantum 
mechanics due to Bell (1966). Bell's criticism of his own model, namely 
that it is very artificial, also applies here--in particular, the mapping A --> av~ 
depends crucially on the ordering of the experimental outcomes 
r~, r2, r 3 , . . . .  It must be emphasized that this criticism in no way affects 
the significance of the example, i.e., there exists a classical covering theory 
for each statistical theory. 

5. THE BELL INEQUALITIES 

5.1. Introduction 

The viewpoint that only classical statistical theories are of fundamental 
interest (see Section 3.1) is supported by Example 4.4, since any nonclassical 
statistical theory may be replaced by a classical covering theory which 
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describes the same physical phenomena. However, it will now be shown in 
the case of quantum mechanics that no such covering theory can satisfy a 
certain locality condition. The demonstration relies upon a derivation of 
the well-known Bell inequalities (Clauser et al., 1969; Clauser and Home, 
1974; Clauser and Shimony, 1978; Fine, 1982), and is significant in that the 
locality condition used is of a weaker nature than the standard factorizability 
condition. 

Coincidence experiments are defined and discussed in the next section, 
and the locality condition is given in Section 5.3. Both "formal" and 
"physical" versions of the Bell inequalities are then derived in Section 5.4, 
following on from and clarifying some earlier work (Hall, 1988) which 
lacked the conceptual basis of statistical theories. Finally, the relevance of 
these results to quantum mechanics is discussed in Sections 5.5 and 5.6. 

5.2. Coincidence Experiments 

The concept of a coincidence experiment is formulated here within the 
context of statistical theories. 

For the statistical theory (S, ~ )  consider the case of a system described 
by state A ~ S, for which the procedures for two yes/no experiments have 
been carried out, corresponding to propositions A, B ~ ~. For example, A 
may refer to a range of position values for a free particle at some time, 
while B refers to a range of momentum values at a later time. A second 
example is the simultaneous measurement of two propositions for a quantum 
mechanical system (Example 3.2, Section 3.4), where the corresponding 
projections commute. 

One may then consider that a single joint experiment, labeled by [A, B], 
has been performed, the result of which lies in the set {(yes, yes), (no, yes), 
(yes, no), (no, no)}. Clearly[A, B] is not a yes/no experiment, and so cannot 
be directly discussed within a statistical theory framework. However, one 
may define the propositions A.B, A'.B, A.B', and A'.B' as being respectively 
verified if the result of [A, B] is (yes, yes), (no, yes), (yes, no), and (no, no), 
and falsified otherwise. If  these propositions are elements of ~, i.e., prob- 
abilities of their verification are predicted by the theory for each state A ~ S, 
then [A, B] may be called a joint experiment of the theory. 

In general, even if a joint experiment [A, B] exists for A, B ~ ~, it need 
not be a joint experiment of the theory. For example, consider the case of 
the posit ion/momentum measurement mentioned above, where (S, ~ )  is 
the "quantum mechanical" statistical theory from Section 3.4 (Example 
3.2). If the experiment [A, B] is suitably chosen (essentially such that the 
projection postulate is applicable), then it follows for 0 ~ S that (A.B)(~b) = 
(~b, ABA0), where A and B are projections onto the appropriate ranges of 
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position and momentum, respectively. Here, since the operator ABA is not 
a projection onto a subspace of H, then A.B ~ ~, and hence [A, B] is not 
a joint experiment of (S, ~) .  It may be noted, however, that ABA is an 
effect (Kraus, 1983), and hence, for the completely convex covering theory 
(S C, ~c)  (Example 4.3, Section 4), [A, B] is a joint experiment of the theory. 
Explicitly, for state W ~ S c, one has 

(A.B)(W) = tr[WABA], (A'.B)(W) = tr[WA'BA'], etc, 

where A' := 1 - A. 
It is perhaps tempting to identify A.B with the joint proposition A ^ B; 

however, this turns out to be incorrect in general, as will be seen below. 
The locality condition given in the next section provides a sufficient criterion 
for such an identification to be made in the case of a class of regular 
statistical theories. 

5.3.  Loca l  S ta t i s t i ca l  Theor ies  

Let [A, B] be a joint experiment of some statistical theory (S, ~) ,  and 
for a proposition X ~ ~ let [X]  denote the corresponding yes/no experiment 
by which X may be tested. Then, the experiments [A], [B], and [A, B] 
correspond to three physically distinct cases, even though the latter is a 
physical combination of the first two. In particular, results of experiments 
[A] and [B] performed singly may not be simply related to the result of 
[A, B]. 

Consider now the situation where experiments [A] and [B] involve, 
respectively, regions RI and Rrt of space-time which are nonoverlapping. 
Predictions of (S, ~ )  may now be compared for N systems described by 
state A in two cases: (1) [A, B] is performed for each system; and (2) [B] 
is performed for each system. In each case, consider the relative frequency 
of verifications in region RH for proposition B. For sufficiently large N, this 
is predicted in case 1 to be (A.B)(A)+(A' .B)(A) ,  and in case 2 to be B(A). 
If these quantities are not equal, then an experiment in region Rn can 
discriminate between cases 1 and 2, i.e., it can be determined within region 
RII whether or not proposition A was tested in region Rr. 

As an example, let [A, B] be the posi t ion/momentum measurement 
discussed in the previous section, for the completely convex theory (S c, ~c). 
It follows that the relative frequencies for cases 1 and 2 above are given 
respectively by 

(A.B)(W) + (A'.B)(W) = tr[WABA] + tr[WA'BA] 

and 

B(W) = tr[WB] 
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Since A and B are noncommuting projections, these relative frequencies 
cannot in general be equal. Thus, the statistical behavior of the momentum 
measurement [B] is influenced by the existence/nonexistence of an earlier 
position measurement [A]. 

The above example demonstrates how the past may influence the future. 
In particular, an experimenter in R I could in principle signal to the future 
region RII by either performing or not performing experiment [A] for a 
large number of systems. 

The principle of local causality is roughly that signals may only be sent 
from the past to the future. Thus, for Newtonian space-time it implies that 
no signals can be sent between spatially separated regions with the same 
time coordinate; while for Einsteinian space-time, no signals can be sent 
between spacelike-separated regions. The latter has the stronger experi- 
mental significance, as in practice all measurements extend over a period 
of time. 

In the light of the above paragraphs, a local statistical theory is defined 
to be one for which, /f [A, B] is a joint experiment of  the theory such that 
[A] and [B] are performed in spacelike-separated regions R~ and Rl~ respec- 
tively, then 

(A.B)(A) + (A'.B)(A) = B(;t ) (19a) 

(A .B ' ) (A)+(A' .B ' ) (A)  = B'(A) (19b) 

(A.B) (A) + (A.B') (A) = A(A ) (19c) 

(A'.B)(A) + (A'.B')(A) = A'(A) (19d) 

for all states A e S. Equations (19a) and (19b) preclude the sending of a 
signal from Rx to RH via the mechanism discussed above; while equations 
(19c) and (19d) preclude the sending of such a signal from RH to R~. 

It follows from relations (6), (9d), and (19) that A . B ~ A  A B, A ' . B ~  
A' ^ B, etc., for local statistical theories. One may then show (Appendix D) 
for local, regular statistical theories satisfying A ^ B ~ ~ for all A, B c ~ that 

A.B=--AAB, A .B '=-AAB ' ,  A .B '=-AAB ' ,  A ' .B ' -~A'  AB ' (20) 

in the case where propositions A, B are to be tested in spacelike-separated 
regions. 

If the "quantum mechanical" statistical theory of Section 3.4 (Example 
3.2) is constrained to be local, equations (19) and (20) then imply that 

AE,~2(~b)+AEt~z2(~b) = Ae2(~b), etc. 

for all ~ ~ H, where At,, Az2 are to be tested in spacelike-separated regions. 
It follows from the relation AE(~b)=(~,E~b) that [E~,E2]---0; i.e., for 
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quantum mechanics to be a local statistical theory, the projections corresponding 
to propositions tested in spacelike-separated regions must commute. 

5.4. Derivation of  Bell  Inequalities 

Let (S, ~ )  be a classical statistical theory, i.e., conditions (15a)-(15c) 
are satisfied. One may then show (Appendix E) for all A~, B~, AH, BH ~ 
and A ~ S that 

-1  -< (At ^ AH)(A) + (A~ ^ B,,)(A) + (B1 ^ B,,)(A) 

- (BI ^ AH)(A) - A,(A) - BII(A) -< 0 (21) 

Further, if(S, ~ )  is a local classical statistical theory and [At, AH], [Al, BII], 
[Bl, All], and [Bl, Bn] are joint experiments of (S, ~ )  such that the 
individual components of each are performed in spacelike-separated 
regions, then (20) and (21) yield 

- 1 -< (A,.AII) (A) + (AvB,,)(A ) + (B,.BH)(A ) 

- (B,.A,,)(A) - A,(A) - B,,(A) <- 0 (22) 

for all states A E S. 
Condition (21) is equivalent to equation (8) of Fine (1982) [replace 

A~, Bz, An, and BII by A, A', B, and B', respectively; (AI^All)(A) by 
P(AB),  etc], derived by him as a property of classical distribution functions. 
Note that this condition connects the predictions of the theory for experi- 
ments of the type IX ^ Y], [X],  and [ Y], where the first is not necessarily 
physically related to the last two. In particular, conditions (20) need not 
hold. This is a consequence of the fact that X ^ Y is only formally connected 
to propositions X, Y ~ ~ in general, via definition (8a). Hence, the contents 
of (21) may be referred to as the formal Bell inequalities. By contrast, the 
contents of (22) may be called the physical Bell inequalities, as this condition 
connects predictions for physically related experiments of the type IX, Y], 
IX],  and [Y]. 

The physical Bell inequalities (22) may be compared with the equation 
immediately preceding equation (4) of Clauser and Horne (1974) [replace 
A~, B~, AH, and Bti by a, a', b, and b' respectively, (AvAn)(A) byp~2(A, a, b), 
BI(A) by pI(A, a'), etc.], or equivalently with equation (3.18) of Clauser 
and Shimony (1978). The Clauser-Horne result was obtained as a con- 
sequence of certain factorizability assumptions, which in the notation of 
this paper may be stated as 

(A.B)(A) = A(A )B(A) (23a) 
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(A'.B) (A) = A'(A )B(A ) (23b) 

(A.B') (A) = A(A)B'(A) (23c) 

(A'.B')(A) = A'(A )B'(A ) (23d) 

for all states A c S, where [A, B] is a joint experiment of the theory such 
that [A] and [B] are performed in spacelike-separated regions. Equations 
(23a)-(23d) regarded as a locality condition, express the statistical indepen- 
dence of measurement results in the two regions, provided the quantities 
(A.B)(A), (A.B')(A), etc., are joint probabilities. This is a further assumption, 
valid only if (20) holds. In the present derivation of the physical Bell 
inequalities, condition (20) is derived within the framework of statistical 
theories. Further, the result relies not on (23), but on (19), where the latter 
is implied by but does not imply (23) and is therefore a weaker formulation 
of locality. 

5.5. The Bell Inequalities and Quantum Mechanics 

In this section it is shown that the physical Bell inequalities (22) provide 
a necessary condition for a statistical theory (S, ~ )  to admit a local, classical 
covering theory. Since, as is well known, quantum mechanics makes some 
predictions which violate the physical Bell inequalities, it follows in par- 
ticular that there are no local, classical covering theories for quantum 
mechanics. 

To validate the remarks of the above paragraph, suppose that (S, ~ )  
is a covering theory for some statistical theory (S, ~).  Hence, for A, B ~ 
there exist propositions A, B c ~ such that experiments [A], [B] are iden- 
tical to [fi~], [/~] respectively [condition (18a)]. In particular, if [A] and 
[B] may both be performed for a system described by state A ~ S, then [fi~] 
and [/~] may be performed on the same system and hence the joint experi- 
ments [A, B], [A, B] are also identical. Thus, if [A, B] is a joint experiment 
of the theory ( S, ~ )  (see Section 5.2), so that A.B c ~, then conditions (18a), 
(18b) imply that 

(A.B)(A) = (A./~)(A) = A-~(A) (24) 

for all states h c S. Equations (24) imply that if the physical Bell inequalities 
hold for (S, ~) ,  then they must also hold for (S, ~) ,  and the statements of 
the above paragraph immediately follow. 

Note that there is no result analogous to equation (24) which yields a 
similar significance for the formal Bell inequalities (21). Indeed, Example 
4.1 of Section 4 demonstrates that the quantities (A ^ B)(A) and A ^ B(A) 
are not equal in general. Thus the possibility remains of a classical covering 
theory for quantum mechanics (although such a theory must be nonlocal), 
and in fact Example 4.4 of Section 4 realizes this possibility. 
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5.6. Modified Statistical Theories 

If  quantum mechanics cannot be embedded within the framework of 
a local, classical statistical theory, a question arises as to whether an 
acceptable modification of statistical theories exists such that both "local" 
and "classical" concepts can be retained for quantum mechanics. 

Perhaps the simplest such modification to the definition of a statistical 
theory (Section 2) is to suppose that propositions cannot in general be 
tested for all states in S. Thus, given a state h e S, then only some propositions 
(e.g., spin in certain directions) may be tested. This may be easily interpreted 
as implying that the experimenter does not have free will in choosing which 
experiment to conduct. 

For such theories, the physical Bell inequalities (22) hold only for those 
states on which it is possible to perform any one of [AI, AII], [A~, Bxx], 
[BI, An], [BI, Bn], [An], and [BI]. However, there may be no such states! 
An explicit example of "escaping" the Bell inequalities in this manner has 
been given by Shimony et al. (1985). 

6. SUMMARY 

The basic tool used in this paper is the concept of a statistical theory, 
as characterized in Section 2. The existence of an associated probability 
and logical structure for each such theory (Section 3.3) then provides a 
basis for the definitions of classical and regular statistical theories (Section 
3.4). The former definition identifies the class of  theories which have classical 
probability and logical structures, while the latter definition distinguishes 
the class of theories regulated by those properties associated with the 
quantum logic approach to axiomatic quantum mechanics (Section 3.5). 
The class of  regular statistical theories contains the class of classical theories. 

The notion of a statistical theory which "explains" the same set of 
physical phenomena as another theory leads to the concept of a covering 
theory (Section 4). Logical properties are not generally preserved in the 
transition from a statistical theory to its covering theory, and in particular 
there exists a classical covering theory for each statistical theory (Example 
4.4). 

Whereas classical and regular theories are defined in a manner designed 
to make their probability and logical structure explicit, i.e., in a formal 
manner, the definition of  a local statistical theory rests on the physical 
concept of coincidence experiments (Section 5.2). The latter concept pro- 
vides a setting for imposing restrictions on signaling between spacelike- 
separated regions of space-time, leading to conditions for a statistical theory 
to be local (Section 5.3). 
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The formal and the physical Bell inequalities are shown to apply to 
classical and to local, classical statistical theories, respectively (Section 5.4). 
Violation of the latter inequalities by quantum mechanics leads to the result 
that there are no local, classical covering theories for quantum mechanics 
(Section 5.5). 

I conclude that the framework of statistical theories is well suited for 
discussing certain aspects of the foundations of quantum mechanics. In 
particular, seemingly disparate features of the quantum logic approach are 
united in the alternative "statistical theory approach" and the role of locality 
in the derivation and significance of the Bell inequalities is elucidated by 
this approach. 

A P P E N D I X  A 

In this Appendix, relations (9), (10), and (14) of w are derived from 
definitions (8), (12), and (13). A lemma to be used in Appendices B and 
C is also proved. 

Relations (9) are derived first. Equation (9a) follows immediately from 
the symmetry of definition (8a). Also, defining A n B ~ ~ by (A ~ B)(A) = 
min{A(A), B(A)} [see definition (13)], it follows from (6) that 

( X ~ A n B )  iff ( X ~ A , X ~ B )  V X ~  (A1) 

Hence, (8a) may be written as 

(A^ B)(A) = sup{X(h)tX ~ ~, X ~ A c ~  B} 

-< sup{X(h)lX E ~ ,  X ~ A  c~ B} 

= (A ~ B)(A) 

and thus (A ^ B ) ~ ( A  ~ B). Relations (A1) and (Tb) then imply (9c), and 
further from (A1) it follows that if X ~ A  ^ B, then X ~ A  and X ~ B ,  for 
all X ~ ~ .  But for X ~ ~ such that X ~ A ,  X ~ B ,  one has 

X(A)<-sup{Y(A)[Yc  ~, Y ~ A ,  Y ~ B }  

= (A^ B)(A) 

for all A ~ S, and hence (9d) is proved. Finally, (9d) may be used to give 

((A ^ B) ^ C)(h)  = sup{X(A)lX ~ ~, X ~ A  ^ B, X ~ C }  

= sup{X(h)]X ~ ~, X ~ A ,  X ~ B ,  X ~  C} 

=sup{X(A) lXc  ~, X ~ A ,  X ~ B A C} 

= ( A  A ( B  ^ C ) ) ( A )  
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thus proving equation (9b). This last result also leads to the consistency of 
definitions (Sa) and (12a). 

Relations (10) may be proved in an entirely analogous manner to the 
above, using definition (8b). 

Relation (14) may be derived as follows. Suppose that X ' c  ~, VX ~ ~. 
Then, using (12), (13), and (7d), one has 

B u t  

= 1 - sup{X(A) lX  ~ gJ, X~gA'~} 

= i n f { 1 - X ( A ) l X c  ~, X ~ g  AI} 

= inf{X'(A)lX ~ g~,X~OA'~} 

= in  ' A c g~, ~ X '  

= 1 - inf{1 - ai(A)} 

= sup{ai(A)} 

=U Ai(A) 
i 

i.e., ((-']i AI)'-= U, A,. Also, if X ~ ~, then X'  c ~, and vice versa. Hence, 

Finally, a useful lemma will be proved. 

Lemma. Suppose (S, ~ )  satisfies the following conditions. (i) IfA~B', 
then (A' ^ B') '~ ~, and (ii) if A~B', then (A' A B')'(A) = A(A) + B(A); for 
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all A, B ~ ~, A ~ S. Then, for any countable sequence A1, A2, A3, . . .  E 
such that Ai~Aj,  Vi #j, one has 

A', (A) = 2  A,(A), VA e S 
i 

Proof. First note that for a sequence A, B e  ~ such that A~B' ,  the 
result follows by condition (ii) of the lemma. Now consider a finite sequence 
A 1 , . . . , A ~ ,  n>-2, satisfying A~A'j ,  Vi#j; and assume that 

n--1 
(Ai=I A',~)'e ~, and 

n ,  

A (A)= Y A~(A), VAcS  
\ i = 1  i ~ l  

Then A , ~ A I  for i=  1, 2 , . . . ,  n - l ,  and hence 

A,(A)-< min{A~(A),. . . ,  A'_x(A)}, V A t S  

i.e., A~f'-'h=~"-I A;,' from (6) and (13), and so A ~ ^ ~ - 1  , /\i=1 Ai from (12a). 
Hence, from condition (i) of the lemma, 

and from condition (ii) 

= ~ A~(,~), VheS  
i = 1  

Thus, the lemma has been proved inductively for finite sequences. 
Consider, finally, the case of a countably infinite sequence, and define 

( )' T~(A):= /~A:  (A) 
i = 1  

Then the limit of the sequence {T~(A)} as n-->oo exists from (12a). But it 
has been shown that T~ (A) = ~ 7= ~ A~(A) for all finite values of n, and hence 
in the limit n--> oo this must also hold, i.e., 

A', (,~)= 2 A~(,~) 
i = 1  i = l  

and the lemma is proved. �9 

A P P E N D I X  B 

It is proved in this Appendix that a statistical theory is classical if and 
only if (1) the representative logic is Boolean, and (2) the mappings 
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m x : 3 ~ [ 0 , 1 ]  given by m~(A):=A(A) are generalized probability 
measures for all h c S. 

Now, for a partially complemented poset ( ~ , ~ , ' )  to be a Boolean 
logic (Gudder, 1979; Beltrametti and Cassinelti, 1981), one requires 
V A, B, C e ~ that 

A A B c ~ ,  A v B c ~  (B1) 

AA (B v C)-= (AA B) v (A^ C) (B2) 

A v (B ^ C ) -  (Av B) ^ (Av C) (B3) 

a ' ~  ~ (B4) 

if A ~ B ,  then B ' ~ A '  (B5) 

AAA'~O,  A v A ' ~ I  (B6) 

Conditions (B1)-(B3) ensure the poset is a distributive lattice, and 
conditions (B4)-(B6) ensure that the partial complementation is an 
orthocomplementation. Further, if condition (2) is to be satisfied, then from 
(16) one has, for each A c S, 

i f A m , A 2 , . . . ~  satisfyAi~A'j  Vi# j ,  

then ( y  Ai)(A) = 3~ A~(h)i (B7) 

I(A) = 1 (B8) 

It will now be shown that (B1)-(B8) are equivalent to conditions 
(15a)-(15c) of the text. 

First, suppose that (B1)-(B8) are satisfied. Then, (15a) and (15b) follow 
from (B4) and (B1), respectively. Further, (9c) and (10c) imply that A ^ B ~  
A ~ A  v B', i.e., A A B O A  v B ' -  (A' A B)', using (B4) and (14). Then, using 
(B7), (B3), (B6), and (11), we have 

(A^B) (A)+(A '  ^ B ) ( A ) = ( ( A ^ B ) v ( A '  AB)(A) 

=((A v A') ^ B)(A ) 

= (1  A B ) ( A )  

=B(A) 

for all A e S, and hence (15c) is obtained. 
It remains to be shown that (B1)-(B8) follow from (15a)-(15c). But 

(B5) and (B8) hold automatically, from (7d) and (4), respectively. Hence, 
only (B1)-(B4), (B6), and (B7) must be checked. 
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Now, (B4) follows immediately from (15a), and then (14), (15a) and 
(15b) imply (B1). Also, if B -= A is substituted into (15c), then (11) implies 
that (A ^ A')(A) = 0, VA e S, and hence that A v A ' -  (A A A') '~ 0' -= 1, i.e., 
(B6) holds. Further, (15a) and (15b) imply (A'A B')'e ~ for all A, Be ~, 
and from (15c), 

(A'A B')'(A) = 1 -(A'A B')(A) 

-- 1 - ( B ' ( A ) - ( A  A B')(A) 

= B(A)+ (A ^ B')(A) 

Thus, if A ~ B ' ,  then AAB'=-A, and so (A'AB')'(A)=-A(A)+B(A). It 
follows that the lemma proved in Appendix A is applicable, i.e., if 
A~, A2, . . .  e ~ satisfy Ai~A~,  Vi #j, then 

AI (a) =E Ai(A), VA e S 
i 

But (15a) and (14) imply that (Ai AI)'(A) = Vi Ai(~), and hence (B7) holds. 
To prove (B2) and (B3), first note that repeated use of (15c) gives 

(A'A B'A C ' ) ( a ) =  (A'A B')(,~) - (A' A B'^  C)(A) 

= A'(A)-  (A' ^ B)(A)-(A'A C)(A) + (A' ^ B ^ C)(A) 

= I - A ( A ) - B ( A ) + ( A A B ) ( A ) - C ( A ) + ( A ^  C)(A) 

+(B A C) (A) - (A^  B ^ C)(A) 

Then, (15a) and (14) yield 

(A v B v C)(A) =A(A)+B(A)+ C ( A ) - ( A ^  B)(A)-(B ^ C)(A) 

- ( C  A A) (A)  + (A ^ B A C) (A)  (B9) 

Substituting C =- 0 in (B9), one obtains 

(Av B)(A) = A ( A ) + B ( A ) - ( A ^  B)(A) 

This result together with (B9) then gives 

(AA (By C))(A)=A(A)+(Bv C ) ( A ) - ( A v B v  C)(A) 

= A(A) + B(A) + C(A) - ( B  A C)(A) 

- ( A v B v  C)(A) 

=(A A B)(A )+ (A ^ C)(A ) - ( A  ^ B ^ C)(A) 

=((AAB) v ( A ^  C))(A) 
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thus proving (B2). Finally, 

Av (B^ C)=-(A' A (B A C)')' 

- (A'^ (B'v C')) '  

((A'A B') v (A'^ C'))' 

-= (A'^ B') '^ (A'^ C') '  

=--(AvB) A(Av C) 

and so (B3) also holds. 
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A P P E N D I X  C 

It is proved in this Appendix that a statistical theory is regular if and 
only if (1) the representative logic is an orthocomplemented, orthocomplete, 
and orthomodular poset, and (2) the mappings rnA: ~ ~ [0, 1] given by 
mA (A):= A(A) are generalized probability measures for all A ~ S. 

Now, for the partially complemented poset (~, 3 ,  ') to satisfy condition 
(1), it is required for all A, B, C ~ ~ that 

i f A ~ B ,  t h e n A v  B 'c  ~ (C1) 

i f A ~ B ,  then Av(A'AB)=-B (C2) 

a ' 6  ~ (C3) 

if A ~ B ,  then B ' ~ A '  (C4) 

A^A'=-O, AvA'=--1 (C5) 

Conditions (C1) and (C2) ensure orthocompleteness and orthomodularity, 
respectively, while (C3)-(C5) imply that the partial complementation is an 
orthocomplementation (Gudder, 1979; Beltrametti and Cassinelli, 1981). 
Further, for condition (2)above to be satisfied, then from (16) it follows 
that for all A ~ S one must have 

if A 1 , A 2 , . . . c  ~ satisfy Ai~A~ Vi#j ,  

I(A) = 1 (C7) 

It will now be shown that (C1)-(C7) are equivalent to conditions 
(17a)-(17c) of the text.- 
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First, suppose that (C1)-(C7) are satisfied by (S, ~) .  Hence, (17a) and 
(17b) follow from (C1), (C3), and (14). Also, if A O B ,  then A ^ B -= A from 
(9d), and (A'^ By(h)  = ( a  v B')(A) = a ( h ) +  B'(A) from (C6). Hence, (17c) 
holds. 

It remains to be shown that (C1)-(C7) follow from (17a)-(17c). Note 
that (C4) and (C7) hold automatically, from (7d) and (4), respectively, and 
hence only (C1)-(C3), (C5), and (C6) must be checked. 

Now, (C3) follows immediately from (17a), and (C1) is implied by 
(14), (17a), and (17b). From the relation A O A ,  it follows from (17c) that 
(A A A')(A) = O, VA ~ S, and thus (A v A') -= (A ^ A')'-= 1, i.e., (C5) holds. 
Also, if A O B ,  then A^B=-A,  so from (17c), (A'AB)(A)=B(A)-A(A) .  
But A'^ BOA' ,  and hence if A O B ,  then 

(A'A (A'^ B)')(h) = A'(A) - (A'^ B)(A) 

=A'(A)- (B(A)-A(A))  

= B ' ( A )  

i.e., (Av(A'AB))=-(A'^(A'AB)')'=----B, and so (C2) holds. 
Finally, (17a), (17b) and (17c), and the lemma proved in Appendix A 

imply for A1, A2 , . . .  ~ ~ satisfying Ai~A~, Vi #L that 

and thus (C6) holds. 

APPENDIX D 

In this Appendix it is first shown that if (S, ~ )  is a regular statistical 
theory such that A ^ B ~ ~ for all A, B ~ ~ (i.e., the representative logic is 
a lattice), then 

(A A B)(h ) + (A' A B)(A) '< B(A) (D1) 

for all A, B ~ ~, A ~ S. Equation (20) of the text is then obtained in the case 
where (S, ~ )  is also local, as a consequence of (D1) and (19). 

To prove (D1), let C :=-- A A B; D :~ A' A B. Then C, D c ~ by assump- 
tion, and C ~ A O A v B' - D', where (9c), (10c), (14), and (17a) have been 
used. Thus, from (7b), CO D' ,  and hence by (C6) of Appendix C, (C v D) 
(A)= C(A)+D(A)  for all A~S. Finally, C O B ,  D ~ B ,  and so, from (6) 
and ( 10d ), it follows that ( C v D) (A) -< B ( h ) for all A E S, and (D 1 ) is proved. 

Suppose now that (S, ~ )  is local, and [A, B] is a joint experiment of 
the theory, where [A] and [B] are to be tested in spacelike-separated regions. 
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From (6), (19a) and (19c), one then has A . B ~ A ,  A . B ~ B ,  and hence 
A . B ~ A  ^ B from (9d). Similarly, it can be shown that A ' . B ~ A '  a B, etc. 
Defining 

ma : = ( A A B ) ( A ) - ( A . B ) ( A ) ,  nA :=(A'  A B ) ( A ) - ( A ' . B ) ( A )  

it follows from the above that rnx, na - 0 for all A e S. Thus, 

(A A B)(A) + (A' A B)(A) = (A.B)(A) + (A'.B)(A) + m~ + nA 

= B ( A ) + m ; ,  +n~ 

using (19a). It follows from (D1) that m~ = n~ = 0 for all A ~ S, and hence 
A ^ B =- A.B, A'  A B =- A'.B. In an analogous manner,  it can also be shown 
that A A B' =- A.B'  and A' A B' -- A' .B' ,  proving (20) of  the text. 

A P P E N D I X  E 

In this Appendix, equations (21) of  the text are derived for classical 
statistical theories. The proof  is based on the derivation by Fine (1982) of  
an analogous result for classical distribution functions (see Section 5.4). 

First, f rom (15a)-(15c), one has for propositions A, B, C, D s ~, A ~ S, 
that 

0-- (A A B'  A C')(A) = (A A B')(A ) - (A A B' ^ C)(A ) 

= A(A ) - (A ^ B)(A ) - (A A C)(A ) + (A A B A C)(A) 

i.e., using (6) and (9c) also, 

(A A B)(A) + (A ^ C)(A) - A(A) -< (A ^ B A C)(A) 

= (AA B A C A D)(A) + (A ^ B A C A D')(A) 

<--(B A D)(A ) + (  C A D')(A ) 

= ( B ^ D ) ( A ) + C ( A ) - ( C  ^ D ) ( A )  

and hence 

O>-- (AAB)(A)+(AA C ) ( A ) + ( C A D ) ( A ) - ( B A D ) ( A ) - A ( A ) - C ( A )  (El)  

Replacing A by A' and swapping B and C in (El) ,  one obtains 

O>-(A' ^ C ) ( A ) + ( A '  A B ) ( A ) + ( B A D ) ( A ) - ( C A D ) ( A ) - A ' ( A ) - B ( A )  

= C(A) - (A A C)(A ) + B(A) - (A A B)(A) + (B A D)(A ) 

- ( C  A D ) ( A ) - I + A ( A ) - B ( A )  
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i,e., 

( A  ^ B) (A  ) + (A  ^ C) (A  ) + ( C A D) (A  ) - ( B  A D ) (  A ) -  A(A  ) - C ( A  ) >---1 

(E2) 

Inequal i t i es  ( E l )  and  (E2) are  jus t  the content  of  equa t ions  (21) o f  the  text,  
where  the p ropos i t i ons  A, B, C, and  D are  ident i f ied  with A~, Air ,  Bn ,  and  
BI,  respect ively.  

No te  that  the de r iva t ion  o f  ( E l )  and  (E2) rel ies only  on the p roper t i e s  

A ' ~  ~ (E3) 

( A A B ^ C ^ D ) ( A ) + ( A A B ^ C ^ D ' ) ( A ) = ( A A B A C ) ( A )  (E4) 

for  all  A, B, C, D ~ ~ ,  A ~ S. Cond i t ions  (E3) and  (E4) are weaker  than  
condi t ions  (15a)- (15c) ,  and  hence  the formal  Bell  inequal i t ies  (21.) in fact  
ho ld  for  a larger  class o f  s tat is t ical  theor ies  than  the class of  c lass ical  
s tat is t ical  theories .  
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